maka:
a. Lt - Lo : Lo x t
atau
Lt = Lo (1 + a x At)
Contoh Soal:
Panjang sebatang alumunium pada suhu 0° C adalah 100 cm. Berapa panjang pada suhu 100° C, bila angka muai panjangnya 0,000026/°C?
Penyelesaian:
Diketahui 0° C, L0.= 100 cm
ti = 100°, = 0,000026/°C
Ditanya : L1
Jawab L1 = Lo (1 + c At)
= 100{1 ÷0,000026(100-0)}
= 100{1 +0,000026x100}
= 100 {1,0026}= 100,26 cm
Jadi, panjang sebatang alumunium = 100,26 cm
Jika suhu mula-mula tidak sama dengan 0° C (tbukan sama dengan 0° C)
maka berlaku rumus:
Keterangan:
L2 = panjang pada suhu
t2, satuan cm atau m
L1 = panjang pada suhu
t1, satuan cm atau ma angka muai panjang,satuan / °C
t2 = suhu sesUdah dipanaskan, satuan °C
t1 = suhu sebelum dipanaskan, satuan °C
Contoh Soal:
Sebatang besi pada suhu 30° C panjangnya 100 cm, dipanaskan hingga suhunya 90° C. Berapakah pertambahan panjang besi jika koefisien muai panjang besi 0,000012/ °C?
Penyelesaian:
Diketahui
t1 = 30 C, L1 = 100 cm, t2
= 90° C
cx=0,0000121°C
Ditanya
Jawab : L2 = L1 {1 + a.. At)
AL = L2 - L1
= 100{1 +0,000012x(90-30)} = 100,072- 100
= 100 {1 + 0000012 x 60}0,072 cm
= 1000{1 +0,00072}
= 100,072 cm
Jadi pertambahan panjangnya adalah 0,072 cm
Koefisien Muai Ruang (Muai Volum) Yaltu angka yang menunjukkan pertambahan volum untuk tiap 1 m3 bahan yang mengalami kenaikan suhu 10 C. Koefisien muai ruang dilambangkan “g" dibaca gamma. Besar angka muai ruang gamma dengan tiga kali muai panjang, bila dinyatakan dengan rumus:
y = 3a atau cx =1/3 Y
Persamaan yang berlaku pada mual ruang dapat dinyatakan dengan
Vt = Vo {1 + y . At}
Keterangan:
V1 = Volum pada suhu t °C
Vo = Volum pada suhu 0°C
y = Koefisien muai ruang /°C
At = Seljsih kenaikan suhu dan 0° C menjadi t°C
Untuk menentukan besarnya koefisien muai ruang dapat ditulls:
y = AV/Vo.t atau y = Vt -Vo/Bo.t
Contoh Soal:
1. Volum sebuah kubus yang terbuat dari logam pada suhu 0° adalah 2 dm3. Berapa volum kubus itu pada suhu 100°C, bila koefisien muai panjang logam = 0,0000171°C?
Penyelesaian:
Diketahui :
V0 = 2 dm3, t0 = 0°C
t1 = 100°C, cx 00000171°C
Jawab :
V = V0 {1 + y . Zt}
= 2 (1 + 3 x 0,000017 (100 - 0)}
= 2 {1 + 0,000051 x 100}
= 2 {1 + 0,0051}
= 20102 dm3
Jadi, volum kubus adalah 2.0102 dm3
2. Volum minyak tanah dalam sebuah wadah pada suhu 0°C adalah 1 dm3, setelah dipanaskan hingga mencapai suhu 100° C volum menjadi 1,0955 dm3.
Penyelesaian:
Berapakah:
a. Koefisien muai ruang
b. Koefisien muai panjang
Diketahui
Vo = = 1 dma, Vt= 1,0955 dm3
ti = 100°C
Ditanya :
a. y
b. a
Jawab :
a. y = Vt-Vo/Vo.t = 1,09551-1/1x1000
y = 0,0009551°C
b. cx = 1/3 y
= 1/3 x 0,000955
= 0, 000318/°C
Bila zat cair atau padat volum mula-mula V1 dan suhu t1 dipanaskan hingga menjadi V2 dan t2
maka berlaku:
Rumus: V2 = V1 {1 + y. At}
Keterangan:
y = koefisien muai ruang
V1 = volum benda pada suhu t1
V2 = volum benda pada suhu t2
At = kenaikan suhu dan
t1°C menjadi t2°C = (t2 -t1)
Contoh Soal:
Volum kubus tembaga pada 30°C sarna dengan 1 dm3 dan koefisien muai panjangnya 0,000017/°C.Berapa volum kubus tembaga pada suhu 120°C
Penyelesaian:
Diketahui :
t1 = 30°C
V1 = 1 dm3
a = 0,000017/°C
t2 = 120°C
Ditanya : V2
Jawab:
V2 = V1{1+y.At}
= I {1 + 3 x 0.000017 x (120 - 30))
= I {1 + 0.000051 x 90)
= 1 {1.00459)
= 100459dm3
Jadi, volum kubus adalah
1,00459 dm3
Koefisien Muai Gas Angka muai gas untuk semua jenis gas besarnya sama yaitu : Ygas = f°C Untuk menghitung perubahan volum terhadap perubahan suhu pada tekanan tetap digunakan rumus :
Vt = Vo {1 + y. t} atau Vt =Vo {1 + 1/273 . t}
Keterangan:
y = koefisien muat gas =1/273 1°C
t = kenaikan suhu dari 0°C menjadi t°C
Vo = volum gas pada 0°C
Vt = volum gas p
a. Lt - Lo : Lo x t
atau
Lt = Lo (1 + a x At)
Contoh Soal:
Panjang sebatang alumunium pada suhu 0° C adalah 100 cm. Berapa panjang pada suhu 100° C, bila angka muai panjangnya 0,000026/°C?
Penyelesaian:
Diketahui 0° C, L0.= 100 cm
ti = 100°, = 0,000026/°C
Ditanya : L1
Jawab L1 = Lo (1 + c At)
= 100{1 ÷0,000026(100-0)}
= 100{1 +0,000026x100}
= 100 {1,0026}= 100,26 cm
Jadi, panjang sebatang alumunium = 100,26 cm
Jika suhu mula-mula tidak sama dengan 0° C (tbukan sama dengan 0° C)
maka berlaku rumus:
Keterangan:
L2 = panjang pada suhu
t2, satuan cm atau m
L1 = panjang pada suhu
t1, satuan cm atau ma angka muai panjang,satuan / °C
t2 = suhu sesUdah dipanaskan, satuan °C
t1 = suhu sebelum dipanaskan, satuan °C
Contoh Soal:
Sebatang besi pada suhu 30° C panjangnya 100 cm, dipanaskan hingga suhunya 90° C. Berapakah pertambahan panjang besi jika koefisien muai panjang besi 0,000012/ °C?
Penyelesaian:
Diketahui
t1 = 30 C, L1 = 100 cm, t2
= 90° C
cx=0,0000121°C
Ditanya
Jawab : L2 = L1 {1 + a.. At)
AL = L2 - L1
= 100{1 +0,000012x(90-30)} = 100,072- 100
= 100 {1 + 0000012 x 60}0,072 cm
= 1000{1 +0,00072}
= 100,072 cm
Jadi pertambahan panjangnya adalah 0,072 cm
Koefisien Muai Ruang (Muai Volum) Yaltu angka yang menunjukkan pertambahan volum untuk tiap 1 m3 bahan yang mengalami kenaikan suhu 10 C. Koefisien muai ruang dilambangkan “g" dibaca gamma. Besar angka muai ruang gamma dengan tiga kali muai panjang, bila dinyatakan dengan rumus:
y = 3a atau cx =1/3 Y
Persamaan yang berlaku pada mual ruang dapat dinyatakan dengan
Vt = Vo {1 + y . At}
Keterangan:
V1 = Volum pada suhu t °C
Vo = Volum pada suhu 0°C
y = Koefisien muai ruang /°C
At = Seljsih kenaikan suhu dan 0° C menjadi t°C
Untuk menentukan besarnya koefisien muai ruang dapat ditulls:
y = AV/Vo.t atau y = Vt -Vo/Bo.t
Contoh Soal:
1. Volum sebuah kubus yang terbuat dari logam pada suhu 0° adalah 2 dm3. Berapa volum kubus itu pada suhu 100°C, bila koefisien muai panjang logam = 0,0000171°C?
Penyelesaian:
Diketahui :
V0 = 2 dm3, t0 = 0°C
t1 = 100°C, cx 00000171°C
Jawab :
V = V0 {1 + y . Zt}
= 2 (1 + 3 x 0,000017 (100 - 0)}
= 2 {1 + 0,000051 x 100}
= 2 {1 + 0,0051}
= 20102 dm3
Jadi, volum kubus adalah 2.0102 dm3
2. Volum minyak tanah dalam sebuah wadah pada suhu 0°C adalah 1 dm3, setelah dipanaskan hingga mencapai suhu 100° C volum menjadi 1,0955 dm3.
Penyelesaian:
Berapakah:
a. Koefisien muai ruang
b. Koefisien muai panjang
Diketahui
Vo = = 1 dma, Vt= 1,0955 dm3
ti = 100°C
Ditanya :
a. y
b. a
Jawab :
a. y = Vt-Vo/Vo.t = 1,09551-1/1x1000
y = 0,0009551°C
b. cx = 1/3 y
= 1/3 x 0,000955
= 0, 000318/°C
Bila zat cair atau padat volum mula-mula V1 dan suhu t1 dipanaskan hingga menjadi V2 dan t2
maka berlaku:
Rumus: V2 = V1 {1 + y. At}
Keterangan:
y = koefisien muai ruang
V1 = volum benda pada suhu t1
V2 = volum benda pada suhu t2
At = kenaikan suhu dan
t1°C menjadi t2°C = (t2 -t1)
Contoh Soal:
Volum kubus tembaga pada 30°C sarna dengan 1 dm3 dan koefisien muai panjangnya 0,000017/°C.Berapa volum kubus tembaga pada suhu 120°C
Penyelesaian:
Diketahui :
t1 = 30°C
V1 = 1 dm3
a = 0,000017/°C
t2 = 120°C
Ditanya : V2
Jawab:
V2 = V1{1+y.At}
= I {1 + 3 x 0.000017 x (120 - 30))
= I {1 + 0.000051 x 90)
= 1 {1.00459)
= 100459dm3
Jadi, volum kubus adalah
1,00459 dm3
Koefisien Muai Gas Angka muai gas untuk semua jenis gas besarnya sama yaitu : Ygas = f°C Untuk menghitung perubahan volum terhadap perubahan suhu pada tekanan tetap digunakan rumus :
Vt = Vo {1 + y. t} atau Vt =Vo {1 + 1/273 . t}
Keterangan:
y = koefisien muat gas =1/273 1°C
t = kenaikan suhu dari 0°C menjadi t°C
Vo = volum gas pada 0°C
Vt = volum gas p
Tidak ada komentar:
Posting Komentar